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Abstract
Strength training to the point of muscular fail-
ure offers considerable benefits for hypertrophy
and strength, but also raises injury risks and re-
covery concerns. We propose a deep learning
solution that predicts when an individual is at
risk of failing their next bicep curl repetition,
enabling safer and more informed training deci-
sions. Our approach addresses a gap in current
exercise-analysis models, which typically focus
on rep counting or form correction without con-
sidering the moment of failure. We collect a
novel dataset of bicep curl sessions performed to
failure and feed extracted joint coordinates from
individual reps into an LSTM-based model. In-
spired by the Remaining Useful Life literature,
our model predicts how many repetitions remain
before muscular failure occurs.

1. Introduction
Strength training to failure refers to performing an exer-
cise until the target muscles are unable to complete another
movement with proper form. While this practice is com-
mon in resistance training to maximise muscle growth, it
carries inherent safety risks. If muscular failure occurs
unexpectedly, trainees may lose control of the weight. In
exercises such as the bench press—where the load is po-
sitioned directly above the chest—this loss of control can
result in severe injury or even death(Lombardi & Troxel,
2003).

This safety concern motivates the central research question
of this project: Is it possible to build a system capable
of predicting when a trainee is about to reach muscular
failure? We hypothesise that joint motion patterns—such
as changes in arm speed or range of motion—can serve
as reliable predictors of impending failure. While there is
substantial literature on pose estimation for exercise-related
tasks like form correction(Matsui et al., 2019) and repetition
counting(Dwibedi et al., 2020), to our knowledge, it has not
been applied to the problem of muscular failure prediction.

To this end, we collect a dataset of 254 bicep curl sets
performed to failure, segment them into individual repe-
titions, extract kinematic markers from joint coordinates,
and train a Hierarchical Long Short-Term Memory (LSTM)
model to forecast when failure is likely to occur. We frame
this as a regression problem inspired by Remaining Useful

Life (RUL) estimation, with the objective of minimizing
the difference between the predicted and actual number of
repetitions remaining.

We chose bicep curls as the test exercise due to their prac-
ticality and safety for novice participants. However, we
believe that demonstrating the feasibility of joint-tracking-
based failure prediction in this low-risk context can serve as
a proof of concept for extending the approach to higher-risk
exercises like the bench press, where similar biomechanical
cues signal the onset of failure.

The rest of the report is structured as follows. Section 2 pro-
vides a high-level overview of the task, formulating the fail-
ure prediction problem and discussing parallels in existing
literature. Section 3 details the novel dataset collected for
this study. Section 4 describes the preprocessing pipeline,
covering pose estimation, repetition segmentation, feature
engineering, and data augmentation. Section 5 presents the
model architectures, including our proposed Hierarchical
LSTM and a linear regression baseline. Section 6 outlines
the experimental setup, training procedures, and evaluation
metrics. Section 7 presents the results comparing the mod-
els. Section 8 discusses and concludes the findings and
their implications. Section 9 suggests directions for future
work.

2. High-level task overview
2.1. Formulation

We formulate the prediction of muscular failure as a sequen-
tial learning task, focused on detecting the point at which a
user is about to fail a repetition. Consider a single exercise
set performed to failure, comprising a sequence of repeti-
tions (reps), where each rep represents a discrete timestep.
Let the final eight reps preceding failure be denoted as
[x7, . . . , x0], where x0 is the last successfully completed rep
before failure occurs, and x7 is the eight-to-last rep in the
sequence. Each xt corresponds to pose-derived features
(e.g., joint angles, velocities) for the t-th rep relative to
failure. Conceptually, this is best understood as a boundary
detection problem: the objective is to accurately identify
the final safe rep x0, without issuing premature warnings.

Our aim is twofold:

1. Maximise the likelihood that the model identifies x0 as
the final safe rep (i.e., P(x0 = t0)).

2. Minimise the likelihood of premature alerts by suppress-



ing predictions for all preceding reps [x1, . . . , x7]. Formally,
we aim to minimise

∑7
t=1 P(xt = t0), where xt = t0 implies

that rep xt is incorrectly classified as last rep before failure.

We restrict our attention to the final eight reps, rather than
the entire set (which may contain many more), for both
practical and modeling reasons. From a practical perspec-
tive, early reps are not relevant—trainees are well aware
when they are far from failure and do not require predic-
tive support at that stage. From a modeling standpoint,
our dataset is relatively small, and including early, easily
distinguishable reps could dilute the model’s capacity to
learn the subtle distinctions between near-failure and actual
failure, which is our central research question.

2.2. Parallels in literature

In Section 2.1, we formulated the task as a boundary de-
tection problem, where the goal is to identify the final safe
repetition before failure. While this framing is intuitive
and aligns with the discrete nature of repetitions, the task
can also be approached from a second, complementary per-
spective: remaining useful life (RUL) estimation. Together,
these two views offer a more complete understanding of the
problem.

In the boundary detection view, the objective is to clas-
sify which timestep corresponds to the final safe rep. This
framing resembles a Hidden Markov Model (HMM), where
hidden states (failure/non-failure) generate observable out-
puts (joint kinematics). However, standard HMMs are not
suitable in this setting. Muscular failure is an absorbing
state that occurs exactly once and cannot be reversed. These
constraints break the Markovian assumptions of recurrence
and state transition flexibility, and HMMs cannot enforce a
single terminal event within a sequence.

Deep learning domains such as video action recognition
or financial event forecasting also involve sequential pre-
diction, but differ from our task in two key respects. First,
they often lack discrete decision points—predictions may
be made continuously or over sliding windows. In contrast,
each rep in our setting defines a clear boundary at which
a prediction must be made. Second, the events of interest
in those domains typically occur multiple times or follow
recurring patterns, whereas muscular failure is a one-time,
irreversible event that terminates the sequence.

To address these structural constraints, we adopt an alterna-
tive framing based on Remaining Useful Life (RUL) esti-
mation—a task in prognostics where the goal is to estimate
how much time remains before a system fails. In typical
RUL settings, models are trained on sequential sensor data
collected during normal operation (e.g., from engines or
turbines), and aim to forecast the number of cycles remain-
ing before a critical failure. As illustrated in Figure1, this
perspective maps cleanly onto our setting: the start of the
8-rep sequence corresponds to the potential failure point
(the onset of degradation), the final successful rep is the
functional failure point, and the failed rep itself marks the
complete failure point. Our objective becomes to estimate

Figure 1. Concept of remaining useful life (RUL) from (Sayyad
et al., 2023)

the number of reps remaining between potential and func-
tional failure—that is, the RUL. We train the model using
mean squared error (MSE), which encourages it to capture
fine-grained fatigue dynamics across reps. Final predictions
can then be thresholded to determine when to trigger an
alert, e.g., when predicted RUL is 1.

This approach has two key advantages. First, it supports
learning smooth temporal trends in biomechanical signals
that might not be easily separable in a classification set-
ting. Second, it aligns with the asymmetric risks of the task:
failing to predict true failure has safety implications, while
false positives reduce user trust. Compared to traditional
RUL settings, however, which may model gradual degra-
dation over thousands of cycles, our task involves much
shorter sequences and with more abrupt degradation, so the
model must be sensitive to rapid transitions while retaining
context from earlier reps.

3. Dataset
Several fitness-related datasets exist, such as Fitness-AQA
(Parmar et al., 2022), Countix (Dwibedi et al., 2020), and
the Waseda Squat dataset (Matsui et al., 2019), addressing
tasks like action quality assessment and repetition count-
ing. However, none specifically capture exercise sequences
performed until muscular failure. Existing datasets typi-
cally omit final repetitions where participants experience
muscular failure, essential for our failure-prediction task.

To address this gap, we collected our own dataset. Partici-
pants performed bicep curls until muscular failure, recorded
vertically from a strict profile angle to clearly capture shoul-
der, elbow, and wrist joints, ensuring minimal perspective
distortion.

Data collection proceeded in two phases:

Pilot Collection: The researchers initially recorded ap-
proximately 20 sets to failure, experimenting with different
clothing types, camera distances, and lighting conditions.
It was found that dark clothing did not significantly impact



Figure 2. Distribution of repetition counts across the dataset. The
dataset comprises 254 sets totalling 3272 repetitions (mean =
12.98, SD = 6.72).

pose estimation, provided shoulder contours were visible.
However, baggy clothing noticeably reduced pose accu-
racy, leading us to instruct future participants to avoid loose
clothing.

Participant Collection: Following ethics approval (appli-
cation number 161250, approved on 2025-03-04), we con-
ducted public data collection sessions at Appleton Tower
Café. Volunteers performed bicep curl sets until muscular
failure under consistent recording conditions.

All video sets were trimmed to include only complete repe-
titions, excluding idle movements before the first rep and
any incomplete final reps. Sets showing severely compro-
mised form, interruptions, or incomplete repetitions were
removed. After trimming the videos to include only full,
properly executed repetitions and removing sets with severe
form issues, our final dataset comprised 254 unique sets
from 66 participants, totalling 3272 reps. The mean number
of repetitions per set was 12.98 with a standard deviation of
6.72 (see Figure 2 for the distribution). Participant informa-
tion sheets and consent forms are provided in Appendices B
and C, respectively.

4. Preprocessing pipeline
The following section covers the preprocessing pipeline for
data. Figure 4 covers these steps.

4.1. Pose Estimation

We employed Mediapipe Pose to extract 2D joint coordi-
nates (x, y) for the shoulder, elbow, and wrist joints nearest
to the camera. To standardise across participants, the shoul-
der landmark position in the first frame was set as the origin
(0, 0), and all other landmarks were translated accordingly.
Pose estimation results were cached as .npz files contain-
ing normalised joint positions and timestamps.

4.2. Rep Segmentation

Videos were segmented into individual reps using a rule-
based method based on elbow angles. The elbow angle

Figure 3. Three sets with smoothed elbow angle over time with au-
tomatic repetition segmentation. Alternating colours (green/pink)
indicate detected reps. The top set displays irregular tempo and
range of motion, the middle set includes a long rest period, and the
bottom set shows consistently paced reps with increasing duration
and mid-rep form dips in elbow angle.

was computed per frame using vectors connecting shoulder-
elbow and elbow-wrist joints, then smoothed with a Gaus-
sian filter to reduce noise. Repetitions were identified as
segments between peaks in elbow angle, where peaks rep-
resent full arm extension.

Rest periods with minimal elbow angle change were not
separately labelled and were included within segmented
rep. Figure 3 illustrates examples of segmented elbow
angle curves.

Segmentation parameters (smoothing factor σ, peak promi-
nence, and minimum peak distance) were iteratively tuned
through manual inspection to ensure accurate and consis-
tent repetition identification. Only complete repetitions
were included, excluding idle or incomplete movements.

4.3. Feature Engineering

Coming from our rep segmentation, each bicep curl rep
is represented as a sequence of frames, where each frame
contains 2D coordinates for the shoulder, elbow, and wrist
joints. To transform these raw pose sequences into a com-
pact, fixed-size input suitable for sequential modelling, we
engineered a set of features that capture both spatial and
temporal movement characteristics. We extracted seven
features per frame, grouped into three categories:

Joint Position (4D): The elbow and wrist positions are
expressed relative to the shoulder origin in the first frame,
yielding four values per frame: elbow_x, elbow_y, wrist_x,
wrist_y. This normalisation accounts for minor changes in
camera framing and participant position, ensuring spatial
consistency across samples.

Velocity (2D): For both the elbow and wrist, we measure



Figure 4. Full preprocessing pipeline. After raw video frames are pose-estimated, they are segmented into reps. Feature engineering
extracts temporal and spatial characteristics (elbow/wrist positions, velocities and ROM). These features are then augmented through
time warping, scaling, and rotation.

how quickly each joint moves between frames. These fea-
tures capture movement dynamics such as slowing or hesi-
tation, which are often observed in fatigued reps.

Range of Motion (ROM, 1D): We calculate the elbow
angle in each frame by measuring the angle between the
shoulder-elbow and elbow-wrist vectors. This gives a dy-
namic ROM signal that is then normalised per rep. A de-
creasing ROM across reps may indicate diminishing force
output and loss of control, both precursors to failure.

To convert each variable-length rep into a fixed-size input,
we sample values from the seven features at 20 evenly
spaced quantiles. This avoids the need for zero padding,
which can distort learning in sequence models. It also
preserves temporal structure while producing a consistent
shape for the LSTM. Each rep is represented as a 20 × 7
feature matrix, capturing key movement snapshots in a
compact and consistent format.

4.4. Data Augmentation

To address the limited size of our dataset and improve
model generalisation, we implemented a data augmentation
strategy in line with established techniques in skeleton-
based human action recognition (Xin et al., 2024). The goal
was to introduce plausible variations in pose and motion
without compromising biomechanical validity. We applied
four main types of augmentation, each targeting different
forms of variability:

Random Rotation: We applied random in-plane rotations
of up to ±5° to all joint coordinates around the shoulder-
centred origin. This simulates slight variations in camera
angle or participant orientation. The rotation preserves limb
proportions and relative distances, ensuring the integrity of
motion patterns while increasing viewpoint diversity.

Scale Perturbation: Joint coordinates were randomly
scaled by a factor between 0.95 and 1.05, uniformly in
both axes. This accounts for natural differences in par-
ticipant body size and positioning relative to the camera.

Such small scale variations have been shown to improve
robustness without distorting kinematic features (Xin et al.,
2024).

Temporal Warping: To reflect realistic variations in rep
tempo, we implemented a time-warping procedure. Each
rep’s joint sequence was resampled using a random factor
between 0.85 and 1.15 and interpolated back to the original
number of frames. This allows the model to learn temporal
patterns independent of execution speed.

Additive Gaussian Noise: We added Gaussian noise with
a standard deviation of σ = 0.02 to all joint coordinates,
mimicking the natural jitter present in pose estimation sys-
tems.

All augmentations were applied consistently across full
sets rather than individual reps. For each original set, we
generated 2 augmented variants, effectively increasing the
training set size fourfold. Importantly, augmented data was
used exclusively during training. Validation and test evalu-
ations were performed on unaltered, original sequences to
maintain experimental integrity.

5. Model Architecture
5.1. Hierarchical LSTM

Figure 5. Unfolded LSTM structure for RUL estimation proposed
in (Wu et al., 2018)

Modern RUL solutions favour recurrent neural networks,
particularly LSTMs, over classical CNNs due to their abil-



ity to model variable-length sequences and long-term trends
(Wu et al., 2024). Our architecture builds on a two-layer
hierarchical LSTM framework similar to (Wu et al., 2018),
but with key adaptations tailored to muscular failure pre-
diction. In their setup (illustrated in Figure 5), sensor data
from individual operational cycles is processed by a first
LSTM layer, where each cycle’s hidden state propagates to
the next cycle, and a neural network estimates RUL at each
timestep.

We adopt a comparable hierarchical structure but reengineer
it to reflect the unique temporal hierarchy of our setting.
Here, our primary “timesteps” are reps, with each rep fur-
ther subdivided into 20 timesteps of 7 ’sensor’ features,
resulting in two nested temporal scales.

This structure requires two modelling stages, shown in Fig-
ure 6. First, the timesteps within each rep are processed by
an initial LSTM to generate a condensed representation of
the rep. This output then feeds into a second LSTM that
models dependencies across reps, analogous to how (Wu
et al., 2018) model dependencies across operational cycles.
The final RUL prediction synthesises outputs from both lay-
ers, allowing the model to disentangle intra-rep dynamics
(e.g., muscle activation patterns within a rep) from inter-rep
degradation trends (e.g., fatigue accumulation across reps).

To address the challenge of detecting failure within the
short critical sequence (the last 8 reps before failure), we
process sliding windows of N consecutive reps. The win-
dow size N was set to 3, based on experimental tuning. We
found that a shorter window prioritizes abrupt biomechani-
cal shifts—such as reduced elbow flexion velocity or range
of motion—that often manifest suddenly in the final reps
preceding failure. In contrast, larger windows risk dilut-
ing these signals with noise from earlier reps, which may
lack predictive relevance. Sliding windows also address
data limitations: with only 250 training sets, overlapping
windows artificially expand the dataset (by generating se-
quences of reps 1–3, 2–4, etc.), mitigating overfitting and
enabling robust learning of failure precursors.

5.2. Linear Regression Baseline

To establish a performance benchmark and validate whether
our problem requires the temporal complexity of an LSTM
architecture, we implemented a linear regression model.

The baseline model processes the same 3-rep sliding win-
dows as our LSTM architecture, but instead of learning
temporal representations directly, it relies on engineered
features. These engineered temporal features are needed
because linear regression lacks any built-in mechanism for
capturing temporal relationships, unlike our LSTM archi-
tecture. For each window we compute summary statistics
of joint coordinates (mean, standard deviation, minimum
and maximum), kinematic variables from the most recent
rep, differences between mean values of the latest rep and
the preceding one to capture short-term fatigue trends, and
cross-rep statistics that summarize patterns across the entire
window.

Figure 6. Our model architecture. Frame-level features (e.g. joint
positions, velocities, range of motion) are encoded using a rep-
level LSTM. The sequence of encoded reps is fed into a main
LSTM, followed by dropout and a dense layer.

6. Experiments
6.1. Hierarchical LSTM

Our model employs two stacked LSTM layers within both
the rep encoder and sequence modeling modules. Each
LSTM layer contains 64 hidden units for rep-level fea-
ture encoding and 128 hidden units for inter-rep sequence
modelling, with dropout (p=0.5) applied between layers to
mitigate overfitting. Training runs for 75 epochs using the
Adam optimizer (learning rate=0.005, weight decay=1e-
5) with batch size 64. Learning rates are halved after 15
epochs of validation loss plateau via ReduceLROnPlateau
scheduling.

Custom Loss function The loss function combines regres-



sion accuracy with asymmetric penalties:

Ltotal =
1
N

N∑
i=1

(yi − ŷi)2

︸            ︷︷            ︸
RMSE

+ α
1
N

N∑
i=1

I(ŷi = 0 ∧ yi > 0)|yi|︸                            ︷︷                            ︸
Premature alert penalty

+ β
1
N

N∑
i=1

I(ŷi , 0 ∧ yi = 0)|ŷi|︸                            ︷︷                            ︸
Missed failure penalty

The first term minimizes prediction error, the second penal-
izes premature failure alerts, and the third heavily penalizes
missed failures. To determine appropriate weights for the
asymmetric penalties, we fine-tuned the hyperparameters
α and β through a grid search. Figure 7 visualizes the re-
sulting R2 surface across different combinations of α and
β. We found that α = 1.0 and β = 0.8 yielded the best
performance, striking an effective balance between early
warnings and missed detections.

Figure 7. Experiments on alpha-beta

6.2. Linear Regression Baseline

We implemented a scikit-learn-based linear regression
model to establish a performance benchmark against our
LSTM architecture. The baseline uses the same feature en-
gineering framework described for the hierarchical LSTM,
but applies different training and prediction strategies.

The model operates on feature vectors of 224 dimensions
created by applying temporal feature extraction to 3-rep
sliding windows as described in Section 5.2. Each win-
dow produces statistics across multiple quantiles (20 per
rep), capturing both intra-rep patterns and inter-rep changes.
Unlike recurrent architectures, this approach explicitly en-
codes temporal relationships through engineered features.

For training, we used standard ordinary least squares re-
gression without regularisation. We experimented with
L1 and L2 regularisation variants but found they offered
no significant performance improvement on our validation
set. The model was trained on the same data split as our
LSTM model, with identical augmentation procedures (2
augmented variants per original training set).

To ensure consistent evaluation across models, the contin-
uous outputs from the linear regression were processed
according to the methodology detailed in Section 6.3, in-
cluding clipping to non-negative values and flooring to the
nearest integer.

6.3. Evaluation Metrics

In addition to reporting continuous regression metrics such
as Root Mean Square Error (RMSE), Mean Absolute Error
(MAE) a and R2 (aligned with our MSE training objective),
we also convert the model’s outputs into a format suitable
for binary classification, as motivated in the problem for-
mulation section. Specifically, we take each predicted RUL
value p and apply a flooring operation, mapping it to ⌊p⌋.
This transforms any prediction in the interval [0, 1) into 0,
which we interpret as imminent failure, meaning the current
rep is likely the final safe one. This binning allows us to
draw a clear decision boundary: a prediction of 0 means
the model believes failure is imminent and an alert should
be triggered, while higher values indicate the user is still
safely within their rep range.



7. Results

Figure 8. Linear regression results showing predicted vs. actual
number of reps away from failure. Each dot represents a sample,
with ideal prediction regions shown as dashed boxes. The percent-
age of predictions falling into each ideal region is also shown.

Figure 9. LSTM results showing predicted vs. actual number of
reps away from failure. Each dot represents a sample, with ideal
prediction regions shown as dashed boxes. The percentage of
predictions falling into each ideal region is also shown.

The experimental results demonstrate that our Hierarchi-
cal LSTM significantly outperforms the linear regression
baseline on the core task of final rep prediction, while main-
taining competitive performance on overall sequence mod-
elling. As shown in Table 1, the LSTM achieves 65.08%
accuracy in identifying the final safe repetition (x0), more
than doubling the linear regression’s 36.52% performance.
This substantial improvement validates our hypothesis that
temporal dependencies and fatigue patterns in the final reps
require nonlinear sequence modelling capabilities beyond
what simple regression can capture. In addition to higher
classification accuracy, the LSTM consistently achieves
lower Mean Absolute Error (MAE) and Root Mean Squared

Model Failure Rep Overall
%correct RMSE MAE %correct RMSE MAE R2

Linear Regression 36.52 1.55 1.14 85.77 2.05 1.56 0.37
Hierarchical LSTM 65.08 1.16 0.91 91.96 1.29 1.035 0.41

Table 1. Performance comparison between the Linear Regression
baseline and the Hierarchical LSTM for rep failure prediction,
where best results are highlighted in bold. The columns under
“Failure Rep” report metrics when predicting the final safe repe-
tition (rep x0). The %correct in this section measures how often
the model correctly identifies that final rep. Under “Overall”,
metrics are computed across all predictions. Here, the Overall
%correct represents the percentage of predictions for reps with
a true remaining count higher than 1 that correctly avoid being
erroneously labelled as failure (i.e. they do not trigger a premature
failure alert).

Error (RMSE) across both failure rep prediction and over-
all sequence performance, indicating better calibration and
more precise numerical predictions.

While the LSTM yields only a modest improvement in
overall R2 (0.41 vs. 0.37), this reflects our explicit design
choice to prioritize boundary detection over global regres-
sion accuracy. As outlined in Section 2, the model’s core
objective is identifying the final safe rep (x0) – not min-
imizing error uniformly across all reps. Our asymmetric
loss function (α = 1.0, β = 0.8) codifies this priority by pe-
nalizing missed failures 25% more harshly than premature
alerts, forcing the LSTM to focus capacity on modeling the
final reps (x0, x1) where biomechanical failure signatures
emerge.

R2, being a global goodness-of-fit metric, is thus less sen-
sitive to performance at this boundary. We intentionally
treat RUL regression as a proxy for detecting the failure
boundary, rather than conventional sequence forecasting –
a distinction clarified in Section 2.2. From this perspective,
the LSTM’s 29% absolute gain in final-rep accuracy con-
firms it captures the degradation patterns preceding failure,
while its stable R2 shows it avoids overfitting noise in early
reps irrelevant to safety decisions.

The linear baseline’s high overall %correct (85.77%) and
low failure rep %correct (36.52%) reflect its risk-averse pre-
diction strategy—by rarely predicting imminent failure, it
minimises premature alerts but fails catastrophically when
failure actually occurs. In contrast, the LSTM’s balanced
performance (65.08% failure detection with 92% overall er-
ror rate) demonstrates its ability to navigate the asymmetric
risk profile described in Section 6, providing more reliable
failure warnings.

8. Discussion
Our findings provide strong evidence that joint movement
patterns can be used to predict the onset of failure in
strength training exercises. Both the linear regression and
Hierarchical LSTM models demonstrated the ability to
learn meaningful predictive patterns, with the LSTM signif-
icantly outperforming the baseline on the task of identifying
the final safe repetition before failure.



As anticipated, the Hierarchical LSTM captured tempo-
ral dependencies more effectively than the linear model,
learning richer representations of fatigue progression and
exercise dynamics. It achieved a 29-point improvement in
failure rep detection accuracy (65.08% vs. 36.52%) and
maintained comparable performance in overall sequence
modelling. This suggests that even with limited data, deep
learning models can extract nuanced signals associated with
physical exertion and imminent failure.

However, the LSTM’s performance is not without limi-
tations. Despite its gains, as illustrated in Figure 9 it
failed to detect the failure rep (x0) in approximately 35%
of cases, and often triggered failure predictions prema-
turely—especially at x1, the penultimate repetition. This
tendency toward early warnings, while arguably safer in
real-time applications, may reduce the practical value of
the system by limiting training efficiency or prematurely
halting sets.

We attribute these limitations primarily to the size and gran-
ularity of our dataset. Distinguishing between the final
and penultimate reps is a subtle task, requiring the model
to learn very fine-grained temporal features. While we
took measures to ensure that all sets reached genuine fail-
ure—including discarding ambiguous cases—some noise
is inevitable. For instance, if a participant unknowingly had
one more rep in reserve, the model would receive conflict-
ing supervision. Such label noise disproportionately affects
x0 and x1, which are already underrepresented in the data
distribution.

With a larger and more diverse dataset, we believe the model
would be better equipped to capture the subtle degradation
signatures unique to each individual’s fatigue pattern.

9. Future Work
Our findings indicate that joint-only pose sequences are suf-
ficient to predict muscular failure in bicep curls. A logical
next step is to test whether this approach applies to higher-
risk exercises like the bench press. While the bench press
involves similar joint movements (primarily elbow exten-
sion) it poses a greater injury risk if failure goes undetected.
Since our method relies solely on pose estimation from
video, it could be particularly valuable in unsupervised
settings, such as home gyms or public facilities without
spotters.

Another promising direction is to explore transformer-based
architectures for failure prediction. Transformers excel
at capturing long-range dependencies in sequential data
and have outperformed RNNs and LSTMs in tasks like
action recognition and motion forecasting (Vaswani et al.,
2017; Plizzari et al., 2021). In this context, transformers
could better model subtle fatigue cues across reps using
self-attention that are not being captured by our LSTM,
while their ability to handle variable-length sequences could
eliminate the need for manual windowing.

Failure detection could also benefit from multi-modal data,

combining pose data with signals like video frame features
(e.g., facial strain), audio cues (e.g., breathing sounds),
or wearable sensor data. While our current focus is on
minimal-equipment deployment, a multimodal approach
could improve accuracy for users willing to trade off conve-
nience.
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Learning 

Principal investigator: Michal Kobiela 

Researcher collecting data: Tomas Maillo, Caterina Mammola 

Funder (if applicable): N/A 

 

This study was certified according to the Informatics Research Ethics Process, 

reference number 161250. Please take time to read the following information 

carefully. You should keep this page for your records.  

 

Who are the researchers? 

The research team comprises Tomas Maillo (s2238874) and Caterina Mammola 

(s2185650) Computer Science students at the School of Informatics taking the 2025  

Machine Learning Practical course. They are supervised by Michal Kobiela 

(m.kobiela@sms.ed.ac.uk) part of the Staff of Machine Learning Practical. 

 

What is the purpose of the study? 

The purpose of the study is to build a dataset of bicep curl exercise sequences, 

which will be used to train a deep learning model to predict muscular failure. This 

model aims to enhance safety during strength training by alerting users prior to 

reaching a point of failure, therefore reducing the risk of injury. 

 

Why have I been asked to take part? 

You have been asked to take part because you are within the targeted demographic 

for this study. We are recruiting individuals who have the ability to perform a series of 

bicep curls safely. Your participation will help us create and refine a dataset that is 

representative of real-world exercise conditions. 
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Do I have to take part? 

No – participation in this study is entirely up to you. You can withdraw from the study 

at any time, up until we record your bicep curls without giving a reason. After this 

point, it will no longer be possible to withdraw because we are not collecting any data 

that would allow us to identify you. 

 

What will happen if I decide to take part?  

If you decide to take part, you will be recorded while performing bicep curl exercises 

in a gym or designated exercise area. The session will involve: 

• Recording video footage of your unilateral (one-arm) bicep curl exercise for 

series of repetitions. We will then ask you to perform the same exercise with 

your other arm.  

• You will not be asked to lift any weight that you are not comfortable with lifting. 

• Data including joint coordinates derived from pose estimation will be 

extracted. 

• The recording will last approximately 5 minutes and may include multiple sets 

as per our exercise protocol. 

• There is no physical risk or discomfort beyond your usual exercise routine. 

 

Are there any risks associated with taking part? 

There are no significant risks associated with participation. The exercise session will 

involve performing standard strength training movements with weights that are not 

challenging, which you would normally undertake as part of your usual workout 

routine. Nonetheless, please follow any exercise guidelines to avoid injury. 

 

Are there any benefits associated with taking part? 

While there are no direct financial or material benefits to you from participating in this 

study, your involvement could contribute to research that may improve safety 

measures in strength training. 
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What data are you collecting about me? 

The data we collect for our research is completely anonymous: We are not collecting 

any information that could, in our assessment, allow anyone to identify you. Your 

signed participant consent form will be kept separately from your responses and 

destroyed in 6 months from signature.  

We are collecting video recordings of you performing bicep curls (your face will not 

be in the shot), from which joint coordinate data will be extracted using pose 

estimation techniques. The data collected will be fully anonymised, and no personal 

identifying information will be linked to your exercise data.  

 

What will happen to the results of this study?  

Results of this study could be published online but this will not include your 

anonymised data.  

The results will also be used as a submission to Coursework for the School of 

Informatics' course Machine Learning Practical. 

 

Who can I contact? 

If you have any further questions about the study, please contact the lead 

researcher, Tomas Maillo (s2238874@ed.ac.uk). 

If you wish to make a complaint about the study, please contact  

inf-ethics@inf.ed.ac.uk. When you contact us, please provide the study title and 

detail the nature of your complaint. 

 

Updated information. 

If the research project changes in any way, an updated Participant Information Sheet 

will be made available on http://web.inf.ed.ac.uk/infweb/research/study-updates.  

 

Alternative formats. 

To request this document in an alternative format, such as large print or on coloured 

paper, please contact Tomas Maillo (s2238874@ed.ac.uk).  

A. Appendix

B. Participant Information Sheet



Participant number:_______________________ 

 

Participant Consent Form 
Project title: Predicting Rep Failure Using Pose-Based Deep Learning 

Principal investigator (PI): Michal Kobiela 

Researcher: Tomas Maillo, Caterina Mammola 

PI contact details: m.kobiela@sms.ed.ac.uk 

 
By participating in the study you agree that:  

• I have read and understood the Participant Information Sheet for the above study, 
that I have had the opportunity to ask questions, and that any questions I had were 
answered to my satisfaction. 
 

• My participation is voluntary, and that I can withdraw at any time without giving a 
reason. Withdrawing will not affect any of my rights. 
 

• I understand that my anonymised data will be stored for the duration outlined in the 
Participant Information Sheet.  

 
Please tick yes or no for each of these statements.  

1.  I agree to being video recorded.   

 

 

  Yes No 

2. I agree to take part in this study. 
 
 

  

  Yes No 

 
Name of person giving consent  Date  Signature 
 
 

 dd/mm/yy   

     

Name of person taking consent  Date  Signature 
 
 

 dd/mm/yy   

 

C. Participant Consent Form


